Packages

class GBTRegressionModel extends RegressionModel[Vector, GBTRegressionModel] with GBTRegressorParams with TreeEnsembleModel[DecisionTreeRegressionModel] with MLWritable with Serializable

Gradient-Boosted Trees (GBTs) model for regression. It supports both continuous and categorical features.

Annotations
@Since( "1.4.0" )
Source
GBTRegressor.scala
Linear Supertypes
MLWritable, TreeEnsembleModel[DecisionTreeRegressionModel], GBTRegressorParams, TreeRegressorParams, HasVarianceImpurity, TreeEnsembleRegressorParams, GBTParams, HasValidationIndicatorCol, HasStepSize, HasMaxIter, TreeEnsembleParams, DecisionTreeParams, HasWeightCol, HasSeed, HasCheckpointInterval, RegressionModel[Vector, GBTRegressionModel], PredictionModel[Vector, GBTRegressionModel], PredictorParams, HasPredictionCol, HasFeaturesCol, HasLabelCol, Model[GBTRegressionModel], Transformer, PipelineStage, Logging, Params, Serializable, Serializable, Identifiable, AnyRef, Any
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. GBTRegressionModel
  2. MLWritable
  3. TreeEnsembleModel
  4. GBTRegressorParams
  5. TreeRegressorParams
  6. HasVarianceImpurity
  7. TreeEnsembleRegressorParams
  8. GBTParams
  9. HasValidationIndicatorCol
  10. HasStepSize
  11. HasMaxIter
  12. TreeEnsembleParams
  13. DecisionTreeParams
  14. HasWeightCol
  15. HasSeed
  16. HasCheckpointInterval
  17. RegressionModel
  18. PredictionModel
  19. PredictorParams
  20. HasPredictionCol
  21. HasFeaturesCol
  22. HasLabelCol
  23. Model
  24. Transformer
  25. PipelineStage
  26. Logging
  27. Params
  28. Serializable
  29. Serializable
  30. Identifiable
  31. AnyRef
  32. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val checkpointInterval: IntParam

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1).

    Param for set checkpoint interval (>= 1) or disable checkpoint (-1). E.g. 10 means that the cache will get checkpointed every 10 iterations. Note: this setting will be ignored if the checkpoint directory is not set in the SparkContext.

    Definition Classes
    HasCheckpointInterval
  2. final val featureSubsetStrategy: Param[String]

    The number of features to consider for splits at each tree node.

    The number of features to consider for splits at each tree node. Supported options:

    • "auto": Choose automatically for task: If numTrees == 1, set to "all." If numTrees greater than 1 (forest), set to "sqrt" for classification and to "onethird" for regression.
    • "all": use all features
    • "onethird": use 1/3 of the features
    • "sqrt": use sqrt(number of features)
    • "log2": use log2(number of features)
    • "n": when n is in the range (0, 1.0], use n * number of features. When n is in the range (1, number of features), use n features. (default = "auto")

    These various settings are based on the following references:

    • log2: tested in Breiman (2001)
    • sqrt: recommended by Breiman manual for random forests
    • The defaults of sqrt (classification) and onethird (regression) match the R randomForest package.
    Definition Classes
    TreeEnsembleParams
    See also

    Breiman (2001)

    Breiman manual for random forests

  3. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  4. final val impurity: Param[String]

    Criterion used for information gain calculation (case-insensitive).

    Criterion used for information gain calculation (case-insensitive). This impurity type is used in DecisionTreeRegressor, RandomForestRegressor, GBTRegressor and GBTClassifier (since GBTClassificationModel is internally composed of DecisionTreeRegressionModels). Supported: "variance". (default = variance)

    Definition Classes
    HasVarianceImpurity
  5. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  6. final val leafCol: Param[String]

    Leaf indices column name.

    Leaf indices column name. Predicted leaf index of each instance in each tree by preorder. (default = "")

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since( "3.0.0" )
  7. val lossType: Param[String]

    Loss function which GBT tries to minimize.

    Loss function which GBT tries to minimize. (case-insensitive) Supported: "squared" (L2) and "absolute" (L1) (default = squared)

    Definition Classes
    GBTRegressorParams
  8. final val maxBins: IntParam

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node.

    Maximum number of bins used for discretizing continuous features and for choosing how to split on features at each node. More bins give higher granularity. Must be at least 2 and at least number of categories in any categorical feature. (default = 32)

    Definition Classes
    DecisionTreeParams
  9. final val maxDepth: IntParam

    Maximum depth of the tree (nonnegative).

    Maximum depth of the tree (nonnegative). E.g., depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. (default = 5)

    Definition Classes
    DecisionTreeParams
  10. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  11. final val minInfoGain: DoubleParam

    Minimum information gain for a split to be considered at a tree node.

    Minimum information gain for a split to be considered at a tree node. Should be at least 0.0. (default = 0.0)

    Definition Classes
    DecisionTreeParams
  12. final val minInstancesPerNode: IntParam

    Minimum number of instances each child must have after split.

    Minimum number of instances each child must have after split. If a split causes the left or right child to have fewer than minInstancesPerNode, the split will be discarded as invalid. Must be at least 1. (default = 1)

    Definition Classes
    DecisionTreeParams
  13. final val minWeightFractionPerNode: DoubleParam

    Minimum fraction of the weighted sample count that each child must have after split.

    Minimum fraction of the weighted sample count that each child must have after split. If a split causes the fraction of the total weight in the left or right child to be less than minWeightFractionPerNode, the split will be discarded as invalid. Should be in the interval [0.0, 0.5). (default = 0.0)

    Definition Classes
    DecisionTreeParams
  14. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  15. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  16. final val stepSize: DoubleParam

    Param for Step size (a.k.a.

    Param for Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of each estimator. (default = 0.1)

    Definition Classes
    GBTParams → HasStepSize
  17. final val subsamplingRate: DoubleParam

    Fraction of the training data used for learning each decision tree, in range (0, 1].

    Fraction of the training data used for learning each decision tree, in range (0, 1]. (default = 1.0)

    Definition Classes
    TreeEnsembleParams
  18. final val validationIndicatorCol: Param[String]

    Param for name of the column that indicates whether each row is for training or for validation.

    Param for name of the column that indicates whether each row is for training or for validation. False indicates training; true indicates validation..

    Definition Classes
    HasValidationIndicatorCol
  19. final val validationTol: DoubleParam

    Threshold for stopping early when fit with validation is used.

    Threshold for stopping early when fit with validation is used. (This parameter is ignored when fit without validation is used.) The decision to stop early is decided based on this logic: If the current loss on the validation set is greater than 0.01, the diff of validation error is compared to relative tolerance which is validationTol * (current loss on the validation set). If the current loss on the validation set is less than or equal to 0.01, the diff of validation error is compared to absolute tolerance which is validationTol * 0.01.

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
    See also

    validationIndicatorCol

  20. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol

Members

  1. final def clear(param: Param[_]): GBTRegressionModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): GBTRegressionModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    GBTRegressionModelModelTransformerPipelineStageParams
    Annotations
    @Since( "1.4.0" )
  3. def evaluateEachIteration(dataset: Dataset[_], loss: String): Array[Double]

    Method to compute error or loss for every iteration of gradient boosting.

    Method to compute error or loss for every iteration of gradient boosting.

    dataset

    Dataset for validation.

    loss

    The loss function used to compute error. Supported options: squared, absolute

    Annotations
    @Since( "2.4.0" )
  4. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  5. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  6. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  7. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  8. lazy val featureImportances: Vector

    Estimate of the importance of each feature.

    Estimate of the importance of each feature.

    Each feature's importance is the average of its importance across all trees in the ensemble The importance vector is normalized to sum to 1. This method is suggested by Hastie et al. (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.) and follows the implementation from scikit-learn.

    Annotations
    @Since( "2.0.0" )
    See also

    DecisionTreeRegressionModel.featureImportances

  9. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  10. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  11. val getNumTrees: Int

    Number of trees in ensemble

    Number of trees in ensemble

    Annotations
    @Since( "2.0.0" )
  12. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  13. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  14. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  15. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  16. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  17. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  18. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  19. val numFeatures: Int

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    GBTRegressionModelPredictionModel
  20. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  21. var parent: Estimator[GBTRegressionModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  22. def predict(features: Vector): Double

    Predict label for the given features.

    Predict label for the given features. This method is used to implement transform() and output predictionCol.

    Definition Classes
    GBTRegressionModelPredictionModel
  23. def predictLeaf(features: Vector): Vector

    returns

    The indices of the leaves corresponding to the feature vector. Leaves are indexed in pre-order from 0.

    Definition Classes
    TreeEnsembleModel
  24. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  25. final def set[T](param: Param[T], value: T): GBTRegressionModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  26. def setParent(parent: Estimator[GBTRegressionModel]): GBTRegressionModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  27. def toDebugString: String

    Full description of model

    Full description of model

    Definition Classes
    TreeEnsembleModel
  28. def toString(): String

    Summary of the model

    Summary of the model

    Definition Classes
    GBTRegressionModel → TreeEnsembleModel → Identifiable → AnyRef → Any
    Annotations
    @Since( "1.4.0" )
  29. lazy val totalNumNodes: Int

    Total number of nodes, summed over all trees in the ensemble.

    Total number of nodes, summed over all trees in the ensemble.

    Definition Classes
    TreeEnsembleModel
  30. def transform(dataset: Dataset[_]): DataFrame

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    dataset

    input dataset

    returns

    transformed dataset with predictionCol of type Double

    Definition Classes
    GBTRegressionModelPredictionModelTransformer
  31. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  32. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  33. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    GBTRegressionModelPredictionModelPipelineStage
    Annotations
    @Since( "1.4.0" )
  34. def treeWeights: Array[Double]

    Weights for each tree, zippable with trees

    Weights for each tree, zippable with trees

    Definition Classes
    GBTRegressionModel → TreeEnsembleModel
    Annotations
    @Since( "1.4.0" )
  35. def trees: Array[DecisionTreeRegressionModel]

    Trees in this ensemble.

    Trees in this ensemble. Warning: These have null parent Estimators.

    Definition Classes
    GBTRegressionModel → TreeEnsembleModel
    Annotations
    @Since( "1.4.0" )
  36. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    GBTRegressionModelIdentifiable
  37. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    GBTRegressionModelMLWritable
    Annotations
    @Since( "2.0.0" )

Parameter setters

  1. def setFeaturesCol(value: String): GBTRegressionModel

    Definition Classes
    PredictionModel
  2. final def setLeafCol(value: String): GBTRegressionModel.this.type

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since( "3.0.0" )
  3. def setPredictionCol(value: String): GBTRegressionModel

    Definition Classes
    PredictionModel

Parameter getters

  1. final def getCheckpointInterval: Int

    Definition Classes
    HasCheckpointInterval
  2. final def getFeatureSubsetStrategy: String

    Definition Classes
    TreeEnsembleParams
  3. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  4. final def getImpurity: String

    Definition Classes
    HasVarianceImpurity
  5. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  6. final def getLeafCol: String

    Definition Classes
    DecisionTreeParams
    Annotations
    @Since( "3.0.0" )
  7. def getLossType: String

    Definition Classes
    GBTRegressorParams
  8. final def getMaxBins: Int

    Definition Classes
    DecisionTreeParams
  9. final def getMaxDepth: Int

    Definition Classes
    DecisionTreeParams
  10. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  11. final def getMinInfoGain: Double

    Definition Classes
    DecisionTreeParams
  12. final def getMinInstancesPerNode: Int

    Definition Classes
    DecisionTreeParams
  13. final def getMinWeightFractionPerNode: Double

    Definition Classes
    DecisionTreeParams
  14. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  15. final def getSeed: Long

    Definition Classes
    HasSeed
  16. final def getStepSize: Double

    Definition Classes
    HasStepSize
  17. final def getSubsamplingRate: Double

    Definition Classes
    TreeEnsembleParams
  18. final def getValidationIndicatorCol: String

    Definition Classes
    HasValidationIndicatorCol
  19. final def getValidationTol: Double

    Definition Classes
    GBTParams
    Annotations
    @Since( "2.4.0" )
  20. final def getWeightCol: String

    Definition Classes
    HasWeightCol

(expert-only) Parameters

A list of advanced, expert-only (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val cacheNodeIds: BooleanParam

    If false, the algorithm will pass trees to executors to match instances with nodes.

    If false, the algorithm will pass trees to executors to match instances with nodes. If true, the algorithm will cache node IDs for each instance. Caching can speed up training of deeper trees. Users can set how often should the cache be checkpointed or disable it by setting checkpointInterval. (default = false)

    Definition Classes
    DecisionTreeParams
  2. final val maxMemoryInMB: IntParam

    Maximum memory in MB allocated to histogram aggregation.

    Maximum memory in MB allocated to histogram aggregation. If too small, then 1 node will be split per iteration, and its aggregates may exceed this size. (default = 256 MB)

    Definition Classes
    DecisionTreeParams

(expert-only) Parameter getters

  1. final def getCacheNodeIds: Boolean

    Definition Classes
    DecisionTreeParams
  2. final def getMaxMemoryInMB: Int

    Definition Classes
    DecisionTreeParams