Packages

class FMRegressionModel extends RegressionModel[Vector, FMRegressionModel] with FMRegressorParams with MLWritable

Model produced by FMRegressor.

Annotations
@Since( "3.0.0" )
Source
FMRegressor.scala
Ordering
  1. Grouped
  2. Alphabetic
  3. By Inheritance
Inherited
  1. FMRegressionModel
  2. MLWritable
  3. FMRegressorParams
  4. FactorizationMachinesParams
  5. HasWeightCol
  6. HasRegParam
  7. HasFitIntercept
  8. HasSeed
  9. HasSolver
  10. HasTol
  11. HasStepSize
  12. HasMaxIter
  13. RegressionModel
  14. PredictionModel
  15. PredictorParams
  16. HasPredictionCol
  17. HasFeaturesCol
  18. HasLabelCol
  19. Model
  20. Transformer
  21. PipelineStage
  22. Logging
  23. Params
  24. Serializable
  25. Serializable
  26. Identifiable
  27. AnyRef
  28. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Parameters

A list of (hyper-)parameter keys this algorithm can take. Users can set and get the parameter values through setters and getters, respectively.

  1. final val factorSize: IntParam

    Param for dimensionality of the factors (>= 0)

    Param for dimensionality of the factors (>= 0)

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  2. final val featuresCol: Param[String]

    Param for features column name.

    Param for features column name.

    Definition Classes
    HasFeaturesCol
  3. final val fitIntercept: BooleanParam

    Param for whether to fit an intercept term.

    Param for whether to fit an intercept term.

    Definition Classes
    HasFitIntercept
  4. final val fitLinear: BooleanParam

    Param for whether to fit linear term (aka 1-way term)

    Param for whether to fit linear term (aka 1-way term)

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  5. final val initStd: DoubleParam

    Param for standard deviation of initial coefficients

    Param for standard deviation of initial coefficients

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  6. final val labelCol: Param[String]

    Param for label column name.

    Param for label column name.

    Definition Classes
    HasLabelCol
  7. final val maxIter: IntParam

    Param for maximum number of iterations (>= 0).

    Param for maximum number of iterations (>= 0).

    Definition Classes
    HasMaxIter
  8. final val miniBatchFraction: DoubleParam

    Param for mini-batch fraction, must be in range (0, 1]

    Param for mini-batch fraction, must be in range (0, 1]

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  9. final val predictionCol: Param[String]

    Param for prediction column name.

    Param for prediction column name.

    Definition Classes
    HasPredictionCol
  10. final val regParam: DoubleParam

    Param for regularization parameter (>= 0).

    Param for regularization parameter (>= 0).

    Definition Classes
    HasRegParam
  11. final val seed: LongParam

    Param for random seed.

    Param for random seed.

    Definition Classes
    HasSeed
  12. final val solver: Param[String]

    The solver algorithm for optimization.

    The solver algorithm for optimization. Supported options: "gd", "adamW". Default: "adamW"

    Definition Classes
    FactorizationMachinesParams → HasSolver
    Annotations
    @Since( "3.0.0" )
  13. val stepSize: DoubleParam

    Param for Step size to be used for each iteration of optimization (> 0).

    Param for Step size to be used for each iteration of optimization (> 0).

    Definition Classes
    HasStepSize
  14. final val tol: DoubleParam

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Param for the convergence tolerance for iterative algorithms (>= 0).

    Definition Classes
    HasTol
  15. final val weightCol: Param[String]

    Param for weight column name.

    Param for weight column name. If this is not set or empty, we treat all instance weights as 1.0.

    Definition Classes
    HasWeightCol

Members

  1. final def clear(param: Param[_]): FMRegressionModel.this.type

    Clears the user-supplied value for the input param.

    Clears the user-supplied value for the input param.

    Definition Classes
    Params
  2. def copy(extra: ParamMap): FMRegressionModel

    Creates a copy of this instance with the same UID and some extra params.

    Creates a copy of this instance with the same UID and some extra params. Subclasses should implement this method and set the return type properly. See defaultCopy().

    Definition Classes
    FMRegressionModelModelTransformerPipelineStageParams
    Annotations
    @Since( "3.0.0" )
  3. def explainParam(param: Param[_]): String

    Explains a param.

    Explains a param.

    param

    input param, must belong to this instance.

    returns

    a string that contains the input param name, doc, and optionally its default value and the user-supplied value

    Definition Classes
    Params
  4. def explainParams(): String

    Explains all params of this instance.

    Explains all params of this instance. See explainParam().

    Definition Classes
    Params
  5. final def extractParamMap(): ParamMap

    extractParamMap with no extra values.

    extractParamMap with no extra values.

    Definition Classes
    Params
  6. final def extractParamMap(extra: ParamMap): ParamMap

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values less than user-supplied values less than extra.

    Definition Classes
    Params
  7. val factors: Matrix
    Annotations
    @Since( "3.0.0" )
  8. final def get[T](param: Param[T]): Option[T]

    Optionally returns the user-supplied value of a param.

    Optionally returns the user-supplied value of a param.

    Definition Classes
    Params
  9. final def getDefault[T](param: Param[T]): Option[T]

    Gets the default value of a parameter.

    Gets the default value of a parameter.

    Definition Classes
    Params
  10. final def getOrDefault[T](param: Param[T]): T

    Gets the value of a param in the embedded param map or its default value.

    Gets the value of a param in the embedded param map or its default value. Throws an exception if neither is set.

    Definition Classes
    Params
  11. def getParam(paramName: String): Param[Any]

    Gets a param by its name.

    Gets a param by its name.

    Definition Classes
    Params
  12. final def hasDefault[T](param: Param[T]): Boolean

    Tests whether the input param has a default value set.

    Tests whether the input param has a default value set.

    Definition Classes
    Params
  13. def hasParam(paramName: String): Boolean

    Tests whether this instance contains a param with a given name.

    Tests whether this instance contains a param with a given name.

    Definition Classes
    Params
  14. def hasParent: Boolean

    Indicates whether this Model has a corresponding parent.

    Indicates whether this Model has a corresponding parent.

    Definition Classes
    Model
  15. val intercept: Double
    Annotations
    @Since( "3.0.0" )
  16. final def isDefined(param: Param[_]): Boolean

    Checks whether a param is explicitly set or has a default value.

    Checks whether a param is explicitly set or has a default value.

    Definition Classes
    Params
  17. final def isSet(param: Param[_]): Boolean

    Checks whether a param is explicitly set.

    Checks whether a param is explicitly set.

    Definition Classes
    Params
  18. val linear: Vector
    Annotations
    @Since( "3.0.0" )
  19. val numFeatures: Int

    Returns the number of features the model was trained on.

    Returns the number of features the model was trained on. If unknown, returns -1

    Definition Classes
    FMRegressionModelPredictionModel
    Annotations
    @Since( "3.0.0" )
  20. lazy val params: Array[Param[_]]

    Returns all params sorted by their names.

    Returns all params sorted by their names. The default implementation uses Java reflection to list all public methods that have no arguments and return Param.

    Definition Classes
    Params
    Note

    Developer should not use this method in constructor because we cannot guarantee that this variable gets initialized before other params.

  21. var parent: Estimator[FMRegressionModel]

    The parent estimator that produced this model.

    The parent estimator that produced this model.

    Definition Classes
    Model
    Note

    For ensembles' component Models, this value can be null.

  22. def predict(features: Vector): Double

    Predict label for the given features.

    Predict label for the given features. This method is used to implement transform() and output predictionCol.

    Definition Classes
    FMRegressionModelPredictionModel
    Annotations
    @Since( "3.0.0" )
  23. def save(path: String): Unit

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Saves this ML instance to the input path, a shortcut of write.save(path).

    Definition Classes
    MLWritable
    Annotations
    @Since( "1.6.0" ) @throws( ... )
  24. final def set[T](param: Param[T], value: T): FMRegressionModel.this.type

    Sets a parameter in the embedded param map.

    Sets a parameter in the embedded param map.

    Definition Classes
    Params
  25. def setParent(parent: Estimator[FMRegressionModel]): FMRegressionModel

    Sets the parent of this model (Java API).

    Sets the parent of this model (Java API).

    Definition Classes
    Model
  26. def toString(): String
    Definition Classes
    FMRegressionModelIdentifiable → AnyRef → Any
  27. def transform(dataset: Dataset[_]): DataFrame

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    Transforms dataset by reading from featuresCol, calling predict, and storing the predictions as a new column predictionCol.

    dataset

    input dataset

    returns

    transformed dataset with predictionCol of type Double

    Definition Classes
    PredictionModelTransformer
  28. def transform(dataset: Dataset[_], paramMap: ParamMap): DataFrame

    Transforms the dataset with provided parameter map as additional parameters.

    Transforms the dataset with provided parameter map as additional parameters.

    dataset

    input dataset

    paramMap

    additional parameters, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" )
  29. def transform(dataset: Dataset[_], firstParamPair: ParamPair[_], otherParamPairs: ParamPair[_]*): DataFrame

    Transforms the dataset with optional parameters

    Transforms the dataset with optional parameters

    dataset

    input dataset

    firstParamPair

    the first param pair, overwrite embedded params

    otherParamPairs

    other param pairs, overwrite embedded params

    returns

    transformed dataset

    Definition Classes
    Transformer
    Annotations
    @Since( "2.0.0" ) @varargs()
  30. def transformSchema(schema: StructType): StructType

    Check transform validity and derive the output schema from the input schema.

    Check transform validity and derive the output schema from the input schema.

    We check validity for interactions between parameters during transformSchema and raise an exception if any parameter value is invalid. Parameter value checks which do not depend on other parameters are handled by Param.validate().

    Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.

    Definition Classes
    PredictionModelPipelineStage
  31. val uid: String

    An immutable unique ID for the object and its derivatives.

    An immutable unique ID for the object and its derivatives.

    Definition Classes
    FMRegressionModelIdentifiable
    Annotations
    @Since( "3.0.0" )
  32. def write: MLWriter

    Returns an MLWriter instance for this ML instance.

    Returns an MLWriter instance for this ML instance.

    Definition Classes
    FMRegressionModelMLWritable
    Annotations
    @Since( "3.0.0" )

Parameter setters

  1. def setFeaturesCol(value: String): FMRegressionModel

    Definition Classes
    PredictionModel
  2. def setPredictionCol(value: String): FMRegressionModel

    Definition Classes
    PredictionModel

Parameter getters

  1. final def getFactorSize: Int

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  2. final def getFeaturesCol: String

    Definition Classes
    HasFeaturesCol
  3. final def getFitIntercept: Boolean

    Definition Classes
    HasFitIntercept
  4. final def getFitLinear: Boolean

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  5. final def getInitStd: Double

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  6. final def getLabelCol: String

    Definition Classes
    HasLabelCol
  7. final def getMaxIter: Int

    Definition Classes
    HasMaxIter
  8. final def getMiniBatchFraction: Double

    Definition Classes
    FactorizationMachinesParams
    Annotations
    @Since( "3.0.0" )
  9. final def getPredictionCol: String

    Definition Classes
    HasPredictionCol
  10. final def getRegParam: Double

    Definition Classes
    HasRegParam
  11. final def getSeed: Long

    Definition Classes
    HasSeed
  12. final def getSolver: String

    Definition Classes
    HasSolver
  13. final def getStepSize: Double

    Definition Classes
    HasStepSize
  14. final def getTol: Double

    Definition Classes
    HasTol
  15. final def getWeightCol: String

    Definition Classes
    HasWeightCol